169 research outputs found

    PhosFox: a bioinformatics tool for peptide-level processing of LC-MS/MS-based phosphoproteomic data

    Get PDF
    Background: It is possible to identify thousands of phosphopeptides and -proteins in a single experiment with mass spectrometry-based phosphoproteomics. However, a current bottleneck is the downstream data analysis which is often laborious and requires a number of manual steps.Results: Toward automating the analysis steps, we have developed and implemented a software, PhosFox, which enables peptide-level processing of phosphoproteomic data generated by multiple protein identification search algorithms, including Mascot, Sequest, and Paragon, as well as cross-comparison of their identification results. The software supports both qualitative and quantitative phosphoproteomics studies, as well as multiple between-group comparisons. Importantly, PhosFox detects uniquely phosphorylated peptides and proteins in one sample compared to another. It also distinguishes differences in phosphorylation sites between phosphorylated proteins in different samples. Using two case study examples, a qualitative phosphoproteome dataset from human keratinocytes and a quantitative phosphoproteome dataset from rat kidney inner medulla, we demonstrate here how PhosFox facilitates an efficient and in-depth phosphoproteome data analysis. PhosFox was implemented in the Perl programming language and it can be run on most common operating systems. Due to its flexible interface and open source distribution, the users can easily incorporate the program into their MS data analysis workflows and extend the program with new features. PhosFox source code, implementation and user instructions are freely available from https://bitbucket.org/phintsan/phosfox.Conclusions: PhosFox facilitates efficient and more in-depth comparisons between phosphoproteins in case-control settings. The open source implementation is easily extendable to accommodate additional features for widespread application use cases

    DNMT Inhibitors Increase Methylation in the Cancer Genome

    Get PDF
    DNA methyltransferase inhibitors (DNMTi) decitabine and azacytidine are approved therapies for myelodysplastic syndrome and acute myeloid leukemia, and their combinations with other anticancer agents are being tested as therapeutic options for multiple solid cancers such as colon, ovarian, and lung cancer. However, the current therapeutic challenges of DNMTis include development of resistance, severe side effects and no or partial treatment responses, as observed in more than half of the patients. Therefore, there is a critical need to better understand the mechanisms of action of these drugs. In order to discover molecular targets of DNMTi therapy, we identified 638 novel CpGs with an increased methylation in response to decitabine treatment in HCT116 cell lines and validated the findings in multiple cancer types (e.g., bladder, ovarian, breast, and lymphoma) cell lines, bone marrow mononuclear cells from primary leukemia patients, as well as peripheral blood mononuclear cells and ascites from platinum resistance epithelial ovarian cancer patients. Azacytidine treatment also increased methylation of these CpGs in colon, ovarian, breast, and lymphoma cancer cell lines. Methylation at 166 identified CpGs strongly correlated (vertical bar r vertical bar >= 0.80) with corresponding gene expression in HCT116 cell line. Differences in methylation at some of the identified CpGs and expression changes of the corresponding genes was observed in TCGA colon cancer tissue as compared to adjacent healthy tissue. Our analysis revealed that hypermethylated CpGs are involved in cancer cell proliferation and apoptosis by P53 and olfactory receptor pathways, hence influencing DNMTi responses. In conclusion, we showed hypermethylation of CpGs as a novel mechanism of action for DNMTi agents and identified 638 hypermethylated molecular targets (CpGs) common to decitabine and azacytidine therapy. These novel results suggest that hypermethylation of CpGs should be considered when predicting the DNMTi responses and side effects in cancer patients

    A normalized drug response metric improves accuracy and consistency of anticancer drug sensitivity quantification in cell-based screening

    Get PDF
    Accurate quantification of drug effects is crucial for identifying pharmaceutically actionable cancer vulnerabilities. Current cell viability-based measurements often lead to biased response estimates due to varying growth rates and experimental artifacts that explain part of the inconsistency in high-throughput screening results. We developed an improved drug scoring model, normalized drug response (NDR), which makes use of both positive and negative control conditions to account for differences in cell growth rates, and experimental noise to better characterize drug-induced effects. We demonstrate an improved consistency and accuracy of NDR compared to existing metrics in assessing drug responses of cancer cells in various culture models and experimental setups. Notably, NDR reliably captures both toxicity and viability responses, and differentiates a wider spectrum of drug behavior, including lethal, growth-inhibitory and growth-stimulatory modes, based on a single viability readout. The method will therefore substantially reduce the time and resources required in cell-based drug sensitivity screening.Abhishekh Gupta et al. present a normalized drug response (NDR) metric for accurate quantification of drug sensitivity in cell-based high-throughput assays. They show that NDR captures both toxicity and viability responses to improve drug effect classification over existing methods

    ePCR: an R-package for survival and time-to-event prediction in advanced prostate cancer, applied to real-world patient cohorts

    Get PDF
    Motivation: Prognostic models are widely used in clinical decision-making, such as risk stratification and tailoring treatment strategies, with the aim to improve patient outcomes while reducing overall healthcare costs. While prognostic models have been adopted into clinical use, benchmarking their performance has been difficult due to lack of open clinical datasets. The recent DREAM 9.5 Prostate Cancer Challenge carried out an extensive benchmarking of prognostic models for metastatic Castration-Resistant Prostate Cancer (mCRPC), based on multiple cohorts of open clinical trial data.Results: We make available an open-source implementation of the top-performing model, ePCR, along with an extended toolbox for its further re-use and development, and demonstrate how to best apply the implemented model to real-world data cohorts of advanced prostate cancer patients.Availability: The open-source R-package ePCR and its reference documentation are available at the Central R Archive Network (CRAN): https://CRAN.R-project.org/package=ePCR. R-vignette provides step-by-step examples for the ePCR usage.Supplementary information: Supplementary data are available at Bioinformatics online.</p

    SynToxProfiler: An interactive analysis of drug combination synergy, toxicity and efficacy

    Get PDF
    Drug combinations are becoming a standard treatment of many complex diseases due to their capability to overcome resistance to monotherapy. In the current preclinical drug combination screening, the top combinations for further study are often selected based on synergy alone, without considering the combination efficacy and toxicity effects, even though these are critical determinants for the clinical success of a therapy. To promote the prioritization of drug combinations based on integrated analysis of synergy, efficacy and toxicity profiles, we implemented a web-based open-source tool, SynToxProfiler (Synergy-Toxicity-Profiler). When applied to 20 anti-cancer drug combinations tested both in healthy control and T-cell prolymphocytic leukemia (T-PLL) patient cells, as well as to 77 anti-viral drug pairs tested in Huh7 liver cell line with and without Ebola virus infection, SynToxProfiler prioritized as top hits those synergistic drug pairs that showed higher selective efficacy (difference between efficacy and toxicity), which offers an improved likelihood for clinical success

    A comparative evaluation of software for the analysis of liquid chromatography-tandem mass spectrometry data from isotope coded affinity tag experiments.

    Get PDF
    The options available for processing quantitative data from isotope coded affinity tag (ICAT) experiments have mostly been confined to software specific to the instrument of acquisition. However, recent developments with data format conversion have subsequently increased such processing opportunities. In the present study, data sets from ICAT experiments, analysed with liquid chromatography/tandem mass spectrometry (MS/MS), using an Applied Biosystems QSTAR Pulsar quadrupole-TOF mass spectrometer, were processed in triplicate using separate mass spectrometry software packages. The programs Pro ICAT, Spectrum Mill and SEQUEST with XPRESS were employed. Attention was paid towards the extent of common identification and agreement of quantitative results, with additional interest in the flexibility and productivity of these programs. The comparisons were made with data from the analysis of a specifically prepared test mixture, nine proteins at a range of relative concentration ratios from 0.1 to 10 (light to heavy labelled forms), as a known control, and data selected from an ICAT study involving the measurement of cytokine induced protein expression in human lymphoblasts, as an applied example. Dissimilarities were detected in peptide identification that reflected how the associated scoring parameters favoured information from the MS/MS data sets. Accordingly, there were differences in the numbers of peptides and protein identifications, although from these it was apparent that both confirmatory and complementary information was present. In the quantitative results from the three programs, no statistically significant differences were observed.</p

    Improved detection of differentially represented DNA barcodes for high-throughput clonal phenomics

    Get PDF
    Cellular DNA barcoding has become a popular approach to study heterogeneity of cell populations and to identify clones with differential response to cellular stimuli. However, there is a lack of reliable methods for statistical inference of differentially responding clones. Here, we used mixtures of DNA-barcoded cell pools to generate a realistic benchmark read count dataset for modelling a range of outcomes of clone-tracing experiments. By accounting for the statistical properties intrinsic to the DNA barcode read count data, we implemented an improved algorithm that results in a significantly lower false-positive rate, compared to current RNA-seq data analysis algorithms, especially when detecting differentially responding clones in experiments with strong selection pressure. Building on the reliable statistical methodology, we illustrate how multidimensional phenotypic profiling enables one to deconvolute phenotypically distinct clonal subpopulations within a cancer cell line. The mixture control dataset and our analysis results provide a foundation for benchmarking and improving algorithms for clone-tracing experiments
    corecore